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Abstract

In this paper we present DYANA, an HLA-based hardware-in-the-loop simulation tool. This tool is
used for Distributed Real-time and Embedded systems (RTES) simulation. RTES models are described
by Unified Modeling Language (UML) statechart diagrams. The statechart diagram is transformed into
HLA-based Simulation Model (HSM). After translation into HSM we use CERTI as the simulation runtime.
The statechart diagram is also transformed into a network of timed automata (NTA). After translation into
NTA we use UPPAAL for RTES model verification. Results of simulation and verification experiments
involving the tool are presented.

1 Introduction

This article introduces DYANA, an integrated environment for development, simulation and verification
of real-time embedded systems. DYANA is the latest simulation tool from the line of instruments developed
by the Laboratory of Computer Systems of Moscow State University.

The first system in the line was STAND [1] (1984-1990). The goal of that project was creating an
environment for simulation of distributed programs in order to estimate their performance on target systems
with different architectures. It employed the first object-oriented distributed operating system in Russia.

The first version of DYANA was developed during 1994-2001. The main aims of that project were to
create a mathematical model of the behavior of a distributed Real-Time System (RTS) and to implement a
generalized approach to simulation of RTS. The success of DYANA led to proposal of the Model-Driven
Approach to RTES development. The DYANA was used in various industrial projects, including the project
DrTesy (Bahmurov A.G. 2000).

In 2001 we started to develop a hardware-in-the-loop simulation (HILS) environment for avionics
systems. Hereafter, this system is referred to as HILS STAND. Some subsystems of DYANA were applied
to real-time environment. This tool is successfully used for development of nautical embedded systems
as well. Since 2010 we are developing a new simulation tool based on the most popular international
standards. The first production version was released in 2012, hence the system is called DYANA-2012.
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This paper gives an overview of the following aspects of DYANA. In section 2, we discuss the basic
requirements for a modern simulation environment that were considered before designing DYANA. Section
3 gives an overview of the subsystems of DYANA that implement various specific features. In section 4,
High Level Architecture standard used in DYANA is introducted. The format in which RTS are defined in
DYANA is discussed in section 5. The verification subsystem is briefly described in section 6. Finally, in
section 7 we give examples of the application of DYANA.

2 Requirements for simulation environment of distributed RTES

We have formulated the following key requirements for our RTES simulation environment. These
requirements were established based on the results of the investigations presented in (ArgoUML 2013,
Bengtsson, Larsen, Larsson, Pettersson, and Yi 1996), and the personal experience of the authors of this
work:

• Modular structure of the simulation environment. The simulation environment should actively use
existing software components developed in open source projects. Therefore, the environment should
have a well-defined block structure.

• Distributed simulation. The simulation environment must support distributed simulation of RTES.
• Compatibility of modeling and verification tools. An important task of the RTES design is to verify

if the behavior of the system complies with its specification. Therefore, the model description
format must be suitable both for simulation and formal verification of the system being developed.

• Compatibility of models. The modern RTES is a complex computer system, which consists of a
large number of interacting devices. Typically, each component of RTES is described by a single
model or group of models, and these models should be consistent with each other.

• Scalability of models. In order to check different properties of the RTES behavior, it may require
different models with different levels of abstraction. These models need to be linked with each
other. Therefore, the simulation environment should have a tool to carry out the correct scaling of
the RTES model description (Dalsgaard, Olesen, Toft, Hansen, and Larsen 2010).

• The ability to create simulation models of RTES appliances, as well as environment model. De-
velopment of RTES using simulation consists of several stages. Initially, each component of the
RTES is a simple software model. Then, the component models become more complex to more
accurately reflect the behavior of real devices. In the final stages of RTES development software
component models are replaced by the device prototypes up to the complete elimination of software
components.

• Online and offline simulation. The simulation system should provide developer tools to run models,
suspend, resume, and a full stop of the experiment. Also, the model execution environment must
have built-in tools to run standalone experiments without operator intervention.

• Support interaction with the hardware in the model and real-time using full-scale data channels.
Simulation environment must provide the ability to connect devices using suitable full-scale data
channels and maintain the speed of the software models execution sufficient to meet the specifications
of the data transfer protocols. The accuracy of the model time binding to physical model time
should be measured in tens of microseconds. For a correct construction of simulation models with
this accuracy runtime environment must have a minimum response time.

• The possibility of faults injection to data transfer channels. An important requirement for RTES
is to provide a given level of resilience to hardware failures. This requirement can be partially
checked at startup and run the RTES model, setting the level of random errors that occur during
data transfer between the individual components of the system. Thus, the simulation environment
should have fault injection module.

• Registration and processing of the simulation results, including the interaction with hardware
monitors of data transfer channels. The modern RTES have hundreds of channels to transmit data
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correctly and on time (Bakhmurov, Balashov, Chistolinov, Smeliansky, Volkanov, and Youshchenko
2008). In order to check these properties the simulation environment must record all events occurring
in the RTES model and save it in a form suitable for further processing.

• Easy to adapt third-party simulation environments for use in conjunction with simulation support
library. The developers of the RTES individual components may have simulation models of their
devices. Using of ready simulation models can significantly ease the development of a new DRE.
Therefore, the runtime environment must support the ability to connect third-party models.

• Simulation environment interoperability with external systems. Some devices in the RTES can be
developed by competing organizations that refuse to give the developers the software model of
these components in order to avoid leakage of their technologies in the simulation process.

• Distributed simulation. The simulation environment must support the ability to distributed simulation
of DRE.

• Intercomputer time synchronization. During the distributed simulation it is necessary to ensure
correct global order. The models can be run on different processors (computers), so the time
synchronization must remain fairly accurate between them.

• Openness of the simulation environment. The simulation environment should be open source. This
allows you to increase the transparency of its operation, and provides a great opportunity to support
and develop the simulation environment.

Analysis of existing simulation environments (Bengtsson, Larsen, Larsson, Pettersson, and Yi 1996,
Bakhmurov, Balashov, Chistolinov, Smeliansky, Volkanov, and Youshchenko 2008) showed that all of the
existing simulation environments, including DYANA (Smeliansky, Bakhmurov, Volkanov, and Chemeritsky
2013) and STAND HILS (Bakhmurov, Balashov, Chistolinov, Smeliansky, Volkanov, and Youshchenko
2008), developed with the participation of some of the authors of this work, do not fully satisfy all of these
requirements.

3 DYANA architecture overview

Figure 1 shows the main components of the new system.
Different colors indicate the degree of reusing open source tools: The blue color designates the tools

that were integrated without any modification; The yellow color shows the tools that were substantially
modified; The green color highlights the new tools developed exclusively for DYANA.

The user interacts directly with the DYANA IDE. The IDE organizes the files related to the currently
developed system, converts the files from one format to another and provides the interface to other
components.

We use UML statecharts as the modeling language for real-time systems and ArgoUML (ArgoUML
2013) as an editor. The integration is done on the level of XMI format, so technically any UML editor
that supports XMI can be used instead of ArgoUML.

DYANA is using HLA-based simulation runtime, particularly CERTI (Noulard, Rousselot, and Siron
2009) for the real-time modeling. As the part of DYANA development efforts we improved CERTI to
support multi-thread execution of models (Smeliansky, Bakhmurov, Volkanov, and Chemeritsky 2013). In
near future, we are going to contribute the modifications to the CERTI community. Federate Generator
produces HLA federates from UML models by a two-step process: first, UML models are translated to
SCXML notation, which is providing an intermediate integration point; then, federates in C++ are generated
from SCXML representations. Execution traces of models run in CERTI can be visualized in Vis4, the
tool based on the tool from (Bakhmurov, Balashov, Chistolinov, Smeliansky, Volkanov, and Youshchenko
2008).

We use UPPAAL (Bengtsson, Larsen, Larsson, Pettersson, and Yi 1996) as a verification tool for
timed automata. UMLToUppaal Tool translates UML statecharts, which represent modeled components, to
UPPAAL timed automata as described in (Konnov, Podymov, Yu., Zakharov, and A. 2012). As a byproduct
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Figure 1: DYANA components

of the translation, the user can check the worst computation estimated time (WCET) by invoking the WCET
analysis tool Metamoc (Dalsgaard, Olesen, Toft, Hansen, and Larsen 2010). The conversion is applied to
the statechart in XMI or SCXML format. The user can also convert the UPPAAL counterexample to a
human-readable format where all states and variables have the same names as in the UML diagram and
convert the UPPAAL queries with the names from the UML statechart to the UPPAAL format.

The RAP tool is not a part of the IDE. Its application is discussed in relation to the second case study
given in section 7.

The following table gives a summary of the files that can be processed in DYANA and DYANA’s
capability

Table 1: DYANA file types.

File type What can be done with it
ArgoUML project Edit in ArgoUML GUI

XMI file (UML statechart) Convert to UPPAAL, convert to SCXML
UPPAAL file (Timed automaton) Open in UPPAAL GUI, verify, convert trace to UML format

SCXML file (UML statechart) Generate federate code, convert to UPPAAL
CERTI launcher file Launch simulation

OTF file (CERTI event trace) Show in Vis
Other file (source code, auxiliary files) Display contents

4 Simulation runtime

4.1 High Level Architecture simulation standard

HLA is a conventional standard in the field of distributed simulation. HLA introduces its own simulation
runtime called the Run Time Infrastructure (RTI). This middleware guarantees the proper functioning of
distributed simulation in accordance with the principles and specifications from HLA standard (IEEE
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2000). The actual roots for the HLA stem from distributed virtual environments. Such environments are
used to connect a number of geographically separated users. HLA is a conceptual heir of Distributed
Interactive Simulation (DIS), which is a highly specialized simulation standard in the domain of training
environments (Fujimoto 1999). The primary mission of DIS is to enable interoperability among separated
simulation systems and to allow the joint simulation of their participation. HLA standard remains relevant
to the DIS principles and even extends them.

HLA was introduced in 1993, when the Defense Advanced Research Projects Agency (DARPA)
designated an award for developing of an architecture that could combine all known types of simulation
systems into a single federation. The HLA standard initially addressed all kinds of as-fast-as-possible,
soft and hard real-time, discrete-event and time-driven, fully-synthetic, human- and hardware-in-the-loop
distributed simulations. However, hard real-time constraints were not supported until the latest HLA
standard version, namely IEEE 1516-2010 (Evolved) released in the very end of 2010. The majority of
HLA-based simulation tools were built on the previous HLA standard versions and do not offer a full HLA
Evolved support yet.

Thereby, HLA-based HILS became possible quite recently and any researches in this area are innovations
in some sense. However, these researches seem to be prospective because of a number of benefits HLA
gives. First, HLA strict support by both the runtime and the models provides their guaranteed compatibility.
It means that HLA model developed with one runtime can also be used with other runtimes without any
modification. In fact, HLA forms an independent market of out-of-the-box simulation models which can
be used with any HLA-compatible simulation runtime.

Secondly, HLA is used as an external simulation interface by some non-distributed runtimes. This
peculiarity enables joined simulation encompassing diversified runtimes and, consequentially, different
model types. For example, a single simulation can include both time-driven fully-synthetic and discrete-
event hardware-in-the-loop models simultaneously, and their developers do not have to adjust their models
for this cooperation.

In addition, there are a lot of subsidiary runtime-independent HLA-based simulation tools, such as
statistic collectors, simulation analyzers, high-level model describing languages and corresponding IDEs.
These tools operate at the model level over the HLA API and do not require any additional support from
the simulation runtime. Therefore, they can be reused with any runtime implementation.

4.2 Choosing the suitable RTI

Table 2: RTI Implementations.

RTI Developer License type
ARTIS GAIA University of Bologna Open Source1

CERTI ONERA GPL2 v2 or later
EODiSP P&P Software GPL

MAK MAK Technologies Commercial
NCWare Nextel Commercial

Portico Portico CDDL3
pRTI Pitch Technologies Commercial

RTI NG Raytheon Commercial

There are a lot of off-the-shelf RTI implementations (2) and this fact gives a hope to get some experience
from other projects, learning from their mistakes. Thereby, it was decided to explore the area in more
details. The study was conducted among the tools, satisfying (at least partially) to the following criteria:

1. The description of the architecture and principles of implementation are available;
2. The source code of the product is available;
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3. The product is still maintained and developed;
4. The implementation is used for real-time simulation.

Most of the examined tools are commercial, and their source code is unavailable. Thereby, benefits
from the use of these implementations are limited to the theoretical base. However, our study found a
number of open source systems also, and we decided to build the target simulation system on the basis
of the most suitable of them. Unfortunately, all the remaining simulation systems have certain drawbacks
in accordance with the purposes of the submitted project. The ARTIS GAIA implementation attracts by
its advanced load balancing mechanism supplementation, but the license for this product does not allow
the free use of its source code (although it is stated that the project will be fully open in future) (Bononi,
Bracuto, D’Angelo, and Donatiello 2004). The open source project EODiSP stopped the development
in 2006 (Birrer, Carnicero-Dominguez, Egli, and Pasetti 2006). Accordingly, there is no one to assist in
solving development difficulties encountered. Portico project RTI is implemented using Java and, due to
the language specific, it is badly compatible with the real-time simulation that is the primary goal of our
project.

Thereby the best base RTI implementation for the development of the considered simulation system
a priori is the CERTI one. CERTI is distributed under the GPL license, continues to evolve, and is
implemented in C++ (a number of extra bindings including Java, Python, Fortran and even MATLAB is
currently available). In addition, CERTI could be deployed on several combinations of platforms (Windows
and Linux, Solaris, FreeBSD) and compilers (gcc, MSVS, Sun Studio, MinGW, etc.).

4.3 CERTI

CERTI is an RTI implementation produced by French Aerospace Laboratory (ONERA). The project
started in 1996 and its primary research objective was to develop the distributed simulation itself whereas
the appeared HLA standard was the project experiment field. CERTI started with the implementation of
the small subset of RTI services, and was used to solve the specific applications of distributed simulation
theory (Noulard, Rousselot, and Siron 2009). Since the CERTI project was open sourced in 2002, a large
distributed simulation developer community has been formed around the project. In many ways due to
contributions of enthusiasts, the CERTI project has grown from basic RTI into a toolset including a number
of additional software components that may be useful to potential HLA users.

The CERTI project has always served a base for researches in the domain of distributed simulation, and
a number of innovative ideas have been implemented with its use. For instance, the problem of confidential
data leakage was solved in context of CERTI RTI architecture, and the considered RTI guarantees secure
interoperation of simulations belonging to various mutually suspicious organizations (Bieber, Raujol, and
Siron 2000). The certain interest for the considered project is a couple of application devoted to high
performance and hard real-time simulation.

Although HLA is initially designed to support fully distributed simulation applications, it provides a
framework for composing not necessarily distributed simulations. Thereby we created an optimized version
of CERTI devoted to simulation deployed on the single shared memory platform and composed simulation
running on high-performance clusters (Adelantado, Bussenot, Rousselot, Siron, and Betoule 2004). Useful
experience can also be adopted from ONERA project on simulation of satellite spatial systems. Each
federate in this federation is a time-stepped driven one. It imposes an additional requirement of hard
real-time: the simulation system should meet the deadlines of each step and synchronize the different steps
of the different federates (D’Ausbourg, Siron, Noulard, and Siron 2008).

4.4 The key difference between HILS STAND and CERTI

The key difference in runtimes of CERTI RTI and HILS STAND is the degree of their parallelism.
CERTI bases on HLA simulation standard, whose roots stem to distributed virtual environments - games
and simulators, which allows geographically separated participants to use a general model of the game
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world, while providing a sufficient interactivity level (Fujimoto 1999). Unlike CERTI, HILS STAND was
originally designed as a parallel computer cluster, whose nodes were usually located in the vicinity of each
other.

Therefore, the systems were constructed under different requirements, and as a result, they are based on
different principles. HILS STAND uses the idea of a common clock. During the simulation hardware clocks
of its nodes are synchronized with a high accuracy, and the simulation participants use these local clocks as
a system-wide. Thus, the consistency of the simulation model is provided automatically. An assumption of
essentially remote nodes does not allow to apply the same approach in HLA-based systems. In accordance
with HLA specifications, each simulation participant should use its own clock. The time of this clock
is called a logical time of the participant. The logical time of each participant advances independently
from the others by means of the RTI time-management services. Consistency of the simulated model is
maintained by RTI, whose implementation relies on one of the distributed synchronization algorithms. For
instance, CERTI offers a choice of two algorithms for this purpose (Chaudron, Noulard, and Siron 2011).

Both approaches have their strengths and weaknesses, and choosing the best of them depends on
the chosen simulation tasks. Distributed synchronization algorithms usually impose a large overhead. In
addition, the careless use of this mechanism can lead to significant performance loss. Imagine a simulation
participant, who does not depend on the others and, therefore, is able to advance permanently. Suppose it
generates a continuous stream of messages to other participants as fast as it can. The destination participants
should handle this stream of messages. But in case their speed is lower than the message-generator one,
their logical time is advanced slower, and RTI has to store the unhandled messages in an appropriate local
buffer until the right time mark is reached. The bigger buffer grows, the slower it works. However, this
fact does not affect the speed of message generation. Thus, the slower buffer works, the bigger it becomes.
This situation results into an avalanche growth of total simulation time. However, it can be bypassed by a
forced slowing down of the message-generator or size restriction of the buffer.

On the other hand replacing a common system time with a set of independent logical times often allows
proactive execution of some simulation participants and may lead to increase in performance in complex
real-world simulation problems. Back to our prior example, if the message-generator would perform some
complex calculations after the transfer of every five messages, its model time handicap over the other
participants would allow it to get more CPU time for its calculations.

5 Using UML to describe RTES

The models simulated with CERTI are written in C++, however, in practice it is more convenient to
design models in specialized modeling languages. We use UML as the most well-known and developed
general purpose modeling language. The model is drawn as a UML statechart that can be automatically
translated into the internal representation in Python, after that it is converted to .h, .cpp and .fed files,
compiled and launched in CERTI.

The statechart consists of simple and composite states and transitions between them. Simple states
represent an atomic state of the system.There are two types of composite states: sequential and parallel.
Automata residing in a parallel state are executed simultaneously. Composite states have special entry and
exit states. Some states are marked with logical formulae called invariants; a system can reside in such
state only while its invariant is satisfied.

Each transition between states may be provided with a guard, an action, and a synchronization. Guards
express requirements that must be satisfied to enable the transition. Actions are the operations performed
after the transition is fired. The syntax of guards, invariants and actions is similar to the syntax of the C
language. DYANA also supports including inline code that is added to the federates during code generation,
and several other user-friendly features like macros, broadcast signals etc.

We used Cheetah (Cheetah 2013), a specialized library of templates, to work with the code generation
templates. The main idea of this library is template compiling with cheetah-compile into the representation
of patterns in Python. After that Python loader uses this representation for source file generation. Cheetah
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template consists of a combination of Python source code and code in a special language that looks like
Python style code. For federate source code generation (with the RTI interfaces) we developed special
templates: separately for .h, .cpp and .fed files. Several cheetah templates for FSM source code generation
are used to generate internal logic of the federates. Each state of the FSM is converted to a single C++
class. To control transition from one state to another a special Controller class was developed. Instances
of this class are created for each FSM of internal federate logic. This class provides a method to initialize
the state and a method to change the state based on newly received events.

6 Verification tools

The verification module of our toolset includes a well-known model-checker UPPAAL (Behrmann,
David, and Larsen 2004), a UML-to-UPPAAL translator (Konnov, Podymov, Yu., Zakharov, and A. 2012),
and a UPPAAL-to-UML counter-example converter. UML-to-UPPAAL translator takes a UML statechart
as an input, regards this statechart as a Hierarchical Timed Automaton (HTA), and translates it into a
Network of Timed Automata (NTA). In addition the translator also converts the queries addressed to UML
statecharts into TCTL formulae that are used as queries in UPPAAL. Then UPPAAL checks an obtained
NTA against a TCTL specification. If a NTA does not satisfy a universally quantified TCTL formula then
UPPAAL builds a counter-example — a run of NTA which refutes the formula. This run is converted to
the corresponding sequence of transitions in UML diagram. In this section we briefly describe the formal
models our translator operates with models and outline the idea of translation algorithm.

The concept of Hierarchical Timed Automata (HTA) was introduced in (David, Moller, and Yi 2003) to
provide a formal operational semantics of UML statecharts. The states of HTA can be nested one into another.
There are three types of states, namely, basic, concurrent, and consecutive. A basic state is a primitive of a
system and represents a “real” state of the system; no states can be nested into it. A concurrent state include
several components nested into it; they represent independent concurrent subcomponents with a standard
interleaving semantics. A consecutive state operates as an automaton. Transitions allows HTA to pass
control from one state to another on the same nesting level, to activate compound states by entering to their
the underlying components, or deactivating compound states by exiting from the underlying components.

States can be marked with invariants of the form c ≤ n, where c is a real-time clock, and n ∈ N. A
state remains active only unless its invariants hold. Transition between states of the same nesting level
are marked with guards and actions. A guard is a Boolean formula over Boolean variables and real-time
expressions c1 �n, c1− c2 �n, where � ∈ {<,≤,=,≥,>}. A transition is active if its source is an active
state and its guard is satisfied. An action is a set instructions such as assignments to variables, clock resets,
sending and receiving of messages via broadcasting channels. Concurrent components of HTA synchronize
their behavior by means of shared variables and message exchange. These actions are performed when the
transition fires.

At each step of HTA run either time progresses and all clocks increase their values by some amount
d, or some set of active transition coherently fire. Formal description of syntax and semantics of HTA can
be found in (David, Moller, and Yi 2003).

UPPAAL is a model checker of Networks of Timed Automata (NTA) against CTL formulae (Behrmann,
David, and Larsen 2004). A timed automaton (TA) is a set of nodes connected with transitions. Some
nodes are distinguished as committed ones: transitions originating from a committed node have the highest
priority, and time does not passes until some a transition from an active committed state fires. Nodes of
TA are with invariants, and transitions — with guards, synchronizations, and actions. TAs can send and
receive messages only via handshake channels.

A network of timed automata (NTA) is a collection of TAs over the same sets of variables, clocks,
and channels; this collection can be viewed as a parallel composition of its TAs provided with a usual
interleaving semantics. At every step of NTA run either time passes, or some individual active transition
which does not involves message exchange fires, or a pair of transitions synchronized by message exchange
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fire simultaneously. Formal description of syntax and semantics of NTA is given in (Behrmann, David,
and Larsen 2004).

Briefly, the HTA-to-NTA translation algorithm operates as follows. For every composite state s of HTA
A it builds an individual TA Ps intended to simulate activation and deactivation of s by means of message
exchanging with the similar automata corresponding to the ambient state s′, s ∈ s′, and to the components
of s. As soon as Ps receives an activating messages, it sends activating messages to all or to only one of
automata (depending on the type of s) that correspond to the components of s. Deactivation of s is simulated
in the same way. Committed nodes of TAs make it possible to activate concurrent states simultaneously.
The translation algorithm also builds two supervising TA: one of them initializes the whole system of
TA, and the other keeps track of the current hierarchy of active compound states of A. The HTA-to-NTA
translation algorithm is described in more details in (Konnov, Podymov, Yu., Zakharov, and A. 2012); we
improve, complete and extend the original HTA-to-NTA translation technique presented in (David, Moller,
and Yi 2003).

7 Case Study

7.1 Traffic lights control system

Just to demonstrate the capability of DYANA to verify and simulate distributed systems designs presented
by UML statechrats we use a traffic lights control system as described in (Furfaro and Nigro 2009). It
consists of two traffic lights on a crossroad. The lights are controlled by a processor supplied with some
sensors. Lights on the street and on the avenue change colors customary to let cars pass by in both directions.
Further, if an ambulance car arrives from any direction, the lights must turn to green on that direction in
order to let the ambulance pass as soon as possible. In this case the controller switches to the mode that
opens a fast and safe passage for the ambulance. It is assumed that only one ambulance can arrive at the
crossing at a time.

Normally the signals of the traffic light are changed in order allowing cars on both roads to pass: green
light on the street lasts 45 time units, then the light turns yellow for 5 units, then 10 units both lights are
red and finally the light on the avenue turns green, and so on. There is a sensor that detects the ambulance
approaching the crossing. When the ambulance shows up on one of the roads, the sensor sends appr signal
to the controller; when the ambulance is close to the crossing, the controller receives the be f ore signal;
finally, when the ambulance passes the crossing, the controller receives the a f ter signal. When the first
signal is received, the controller turns to safe mode and turns the light red on both roads. When the second
signal is received, the light is turned green on the road where the ambulance is. When the third signal is
received, the light turns red on both roads and then the normal order is restored.

The model consists of four components — two traffic lights, the ambulance and the controller. The
components exchange information via signals and special flag variables. Variables dir and amb are used to
keep track of the ambulance location. Boolean flags avr, avy, avg for the avenue light and str, sty, stg for
the street light indicate the current color of the light (avr = 1 means that the avenue light is red, avr = 0
means that avenue light is not red). The initial state is ABothRed (both lights are red).

To verify the model the authors of (Furfaro and Nigro 2009) build its UPPAAL specification manually.
We specified this model by means of UML and used our verification system to check the following properties.

1. This property guarantees the absence of deadlocks: A2¬deadlock.
2. The lights are synchronized: if the avenue light is green or yellow, the street light must be red and

vice versa:
A2(¬(stg = 1∨ sty = 1)→ avr = 1),
A2(¬(avg = 1∨avy = 1)→ str = 1).

3. This property means that there exists a trace where both lights are green at the same time and it
was proved to be invalid: E3(stg = 1∧avg = 1).
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4. The seemingly contrary property is not satisfied too, because there is a situation where one light
is red and the other one is yellow: A2(stg = 1∨avg = 1).

5. Home state for the ambulance car is reachable from the Approaching state, which basically means
that the ambulance will always eventually pass the crossing: Ambulance proc.Approaching ;

Ambulance proc.Home.

7.2 Integration with RTES design tools

Another example of using DYANA is a simple RTES model for measuring execution times of scheduled
tasks.

We consider that RTES consists of a set of processors connected by a network. RTES program is a set
of interacting tasks. During the system design it is necessary to measure tasks execution times repeatedly
in order to minimize these times or to verify that time limitations are satisfied. Sometimes tasks execution
times can be measured only by simulation. DYANA has a tool for integrating RTES design programs with
the simulation environment for tasks execution times measuring.

Our integration tool creates an RTES SCXML model from an XML-file containing a schedule. Then
SCXML model is converted into HLA federates, which are executed in CERTI. Then simulation output is
parsed and an XML file with required times is created.

The RTES program can be represented with its data flow graph. Each vertex is marked by the time of
execution of the corresponding task and each edge is marked by the time of data transfer. A schedule for
the program is defined by task allocation, the correspondence of each task with one of the processors, and
task order, the order of execution of the task on the processor. (Kostenko and Zorin 2012)

We assume that there may be only one data transfer at any one time. Some real standards, for example
MIL-STD-1553, satisfy this restriction.

The main principles of creating RTES SCXML model from a schedule are described below.
Every processor corresponds to a single state chart. A task execution is represented by a chain of states:

• Waiting For Data is the initial state for the task. The chart moves from this state into the Working
state after the task has received all required data from other tasks and all previous tasks have finished
on this processor.

• Working. The chart moves from this state to the Waiting For Channel state when the task working
time elapses.

• Waiting For Channel. The chart is being in this state until data transfer channel is free. Then the
chart moves into the Sending state.

• Sending. The chart moves from this state to the End state when data transfer time elapses. The
time of the transfer finish is the time which we want to measure.

• End. If there is any unexecuted task the chart moves into its Waiting For Data state. Otherwise
this state is the final state of the chart.

The initial state of the chart is the Waiting For Data state of the first task.
We used this integration scheme with the program which solves reliability allocation problem (RAP).

Let us describe this problem informally.
RTES data flow graph is defined. Each vertex corresponds to an RTES subsystem. Each subsystem

consists of a hardware component, a software component and an optional fault tolerance (FT) mechanism.
FT is the approach that enables RTES to continue operating correctly in case of the failure of some of
its components. In this study we considered two FT mechanisms: N-version programming (NVP/0/1,
NVP/1/1) and recovery blocks (RB/1/1) (Wattanapongsakorn and Coit 2007).

For each hardware and software component there is a set of versions of this component. For each
component its cost and reliability is defined. An execution time of each software component running on
each hardware component is defined. Number of component versions used in the subsystem, and number of
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copies for one version, are determined by the FT mechanism chosen for the subsystem. Reliability and cost
of RTES are determined by choice of hardware components, software components and FT mechanisms.
There are mandatory restrictions on software components deadlines. Using FT mechanisms increases
software components execution times. RTES which maximizes system reliability under cost and times
constraints is to be found. We use an adaptive hybrid genetic algorithm (AHGA) (Bakhmurov, Balashov,
Glonina, Pashkov, Smeliansky, and Volkanov 2011) for searching the solution of RAP. It was shown that
RTES configuration in terms of RAP can be represented as a schedule. It allows to compute tasks execution
times by simulation using the described integration scheme. Experiments showed that in comparison with
AHGA the scheme worked very slow. Therefore we studied some approximation methods in order to
decrease required number of simulation experiments.

8 Conclusion

In this paper we have given an overview of the current features of DYANA, a real-time simulation
environment. Key features of the proposed tool:

• Using UML statecharts as the modeling language for real-time systems. We use ArgoUML as an
editor of UML statecharts.

• Supporting HLA-based HILS. We improved CERTI to support multi-thread execution of models.
• Converting UML model into timed automata and use UPPAAL as a verification tool for timed

automata.
• Checking the worst computation estimated time (WCET) by invoking the WCET analysis tool

Metamoc.
• Using of OTF trace format for execution traces of models run in CERTI.

Directions for future research include:

• More thorough exploration of the proposed tool on other examples of RT systems described in
literature and on data from real RTES.

• UML-to-UPPAAL translation algorithm can be significantly refined to generate far more state-space
saving NTA.

• Creation of tool for automate processing of simulation experiments results.
• Creation of hybrid time synchronization for more fast HILS.
• Research of using metamodels for simulation time optimisation.
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